
Towards Next-Generation Botnets

Ralf Hund Matthias Hamann Thorsten Holz

Laboratory for Dependable Distributed Systems
University of Mannheim, Germany

Abstract

In this paper, we introduce the design of an ad-
vanced bot called Rambot that is based on the weak-
nesses we found when tracking a diverse set of botnets
over a period of several months. The main features of
this bot are peer-to-peer communication, strong cryp-
tography, a credit-point system to build bilateral trust
amongst bots, and a proof-of-work scheme to protect
against potential attacks. The goal of this work is to
increase the understanding of more advanced botnet
designs, such that more efficient detection and mitiga-
tion systems can be developed in the future.

1 Introduction

A bot is a computer program installed on a com-
promised machine which allows an attacker to execute
arbitrary commands on the infected machine. Botnets,
i.e., networks of such bots under a common control in-
frastructure, are one of the main problems in today’s
Internet since botnets are often used to carry out Dis-
tributed Denial-of-Service (DDoS) attacks, send a large
amount of spam or phishing mails, and other nefarious
purposes [4, 15, 22].

In response to this problem, researchers developed
a diverse set of techniques and tools to either detect
or mitigate botnets [2, 8, 11, 12, 18]. Unfortunately,
most of these techniques focus on botnets with a central
server used for Command & Control (C&C): in these
scenarios, the bots connect to a central server from
which they receive the commands they are supposed
to execute. Mitigation of such botnets can be achieved
by locating the central server and then shutting it
down [8]. However, in the recent months, the first bot-
nets that use a peer-to-peer (P2P) based communica-
tion channel appeared [6, 10, 21, 26, 27]. Dealing with
such botnets is a challenging task, still some techniques
to track these botnets have been proposed [14].

In the near future, we expect the emergence of more
advanced botnets that can defeat the current defense

mechanisms. In this paper, we present the design
of one such advanced botnet named Rambot, a next-
generation botnet whose design is based on the lessons
we learned when tracking a diverse set of botnets over
a period of several months. We address all the weak-
nesses of current botnets we noticed and construct a
botnet that is hard to track and shut down. While
some of our design decisions seem to be obvious, e.g.,
using strong cryptography, (almost) no current botnet
uses them. Furthermore, some aspects of Rambot’s
design are countermeasures against new techniques to
track botnets, e.g., proof-of-work schemes to counter
crawling of the whole botnet.

One basic design aspect of the botnet developed in
this paper is P2P-based communication. While de-
centralized botnets overcome many of the problems
of botnets with a central server, e.g., there is no sin-
gle point of failure, also several distinct weak points
against someone who wants to shut down the network
arise. In a central botnet, many security related re-
quirements, such as, for example, authentication of
botmaster commands, are guaranteed as long as the
central server has not been compromised. While this
has been proved to be a reasonable assumption, things
are more complicated concerning a decentralized net-
work since each bot carries additional responsibilities.
We illustrate these implications throughout the paper
and subsequently offer solutions to such problems. In
summary, Rambot is an example of the threats and
challenges we expect in the near future.

The area of botnets faces – similar to other fields –
an arms race between botmasters and defenders. To
keep up with latest developments, researchers need to
continue to improve detection and mitigation methods
and investigate new techniques used by botmasters.
The goal of our work is to increase the understand-
ing of more advanced botnet designs. We anticipate
that this paper ultimately leads to the development of
new, sophisticated techniques, which will help to fend
off arising threats.

1



2 Towards Resilient Botnets

2.1 Peer-To-Peer Communication

One main aspect of Rambot’s design is the usage
of P2P technology to accommodate for the unique re-
quirements of botnets. This, on the other hand, brings
up additional challenges, which need to be addressed
during the design phase, e.g., the architecture should
be able to effectively handle the specific communication
needs of a decentralized botnet and ideally provide a
convenient protocol, while still maintaining a certain
degree of flexibility. Therefore, the typical communi-
cation scheme of a P2P botnet is rather simple com-
pared to the ones of decentralized networks which were
designed with different purposes in mind, e.g., efficient
file exchange [3, 20, 23]. The main difference is that the
bandwith needs within a botnet are commonly rather
small since the botmaster only occasionally sends com-
mands or updates to the bots. Concerning communica-
tion, a bot’s main task is to disperse information (e.g.,
botmaster commands, updates, or spam templates) to
a preferably high number of nodes within a short pe-
riod of time. By all means, the information should
arrive at a high fraction of all bots at least once and
should not have already become obsolete at the time
of its first delivery.

Proprietary P2P module and fallback system.
Contrary to most existing P2P botnets (e.g. Storm
Worm), Rambot is not implemented on top of an exist-
ing network like Gnutella. Instead, a customized P2P
module, which can be conveniently realized by modify-
ing P2P frameworks like JXTA or GNUnet, handles all
connections to other members of the botnet. This ap-
proach allows for advanced defense mechanisms like a
system of trust based on credit points and the preven-
tion of crawling through proof-of-work schemes. Both
techniques will be explained in greater detail later on.

Two separate peer-lists form the backbone of Ram-
bot’s P2P module: the so-called regular peer-list and a
credit point based peer-list. The former one is common
to many existing P2P networks. It simply contains a
specified number of peers who are not behind a fire-
wall or router and have a static IP address. The latter
peer-list contains potential connection destinations in-
side the botnet prioritized by credit points. The exact
details of the credit point system as well as its use to
strengthen Rambot’s reliability are explained in detail
in Section 2.3.

A bot that wants to (re)connect to the network per-
forms two simultaneous, but independent tasks. For
one thing, it pseudo-randomly selects peers from the

regular peer-list and tries to connect to them. In case it
does not succeed, the unavailable peer is dropped from
the list and another one is chosen. This process contin-
ues until a sufficient number of connections have been
established. As it is essential to replace dropped peers
in the regular peer-list with available ones, each suc-
cessful connection establishment is followed by a peer-
list exchange between the involved parties. To prevent
defenders from crawling the botnet, only a fragment
of each bot’s regular peer-list is exchanged. Further-
more, a technique called proof-of-work will be intro-
duced in Section 2.4 to prevent mass-requests from a
defender. However, up to this point, Sybil or similar
attacks [7, 24, 25] would still be possible as a valid bot’s
peer list could be filled with malicious peers simulated
by a defender. To fend this off, a reconnecting bot uses
the credit point based peer-list to establish additional
connections to bots which have proved their reliability
and trustworthiness in the past.

To cover the case that both peer-lists do not con-
tain any available peers (e.g., due to the botnet being
very small or a bot reconnecting after a long offline
period), Rambot is equipped with a fallback system:
the bot which is cut off uses an existing P2P network
to call for help. Gnutella (or any other unstructured
P2P network) is perfectly suited for this purpose as
it permits to broadcast messages throughout the net-
work. The botmaster has to provide a small number of
backup servers who join the regular Gnutella network
and listen for requests from bots asking for a valid peer-
list. Those servers can alter arbitrarily (e.g., changing
IP addresses or locations) since the servers use public-
key cryptography as explained in Section 2.2 to prove
their authenticity. This also prevents malicious backup
servers from flooding cut off bots with invalid peer-lists.
As defenders might try to misuse the backup system
to gain an overview of the botnet, the previously men-
tioned proof-of-work protocol is employed, which forces
bots who ask for a current peer-list to complete a CPU-
intensive task first. Moreover, as only a small number
of available bots is needed for reconnection purposes,
the botmaster’s backup servers should supply very few
peer addresses per request. This design offers a high de-
gree of stealthiness since bots join an existing P2P net
like Gnutella only in exceptional circumstances. Thus,
they are protected by the defense techniques of Ram-
bot’s proprietary P2P module most of the time. Later
on, we will discuss these mechanisms in full detail.

Communication structure. Concerning the un-
derlying communication structure, we use a message-
based system. That is, bots exchange and synchronize
their current state on the basis of P2P messages, which
we divide into two different classes hereafter: push-

2



based and pull-based messages. The former typically
consist of botmaster instructions, for instance DDoS-,
spamming-, exploit-commands and the like, sharing the
characteristic of being comparatively short in length.
The latter class comprises large contiguous data such
as, for example, program updates and spam templates.
This distinction allows separate rules of propagation
to be applied to instances of the corresponding classes.
Push-based messages are dispersed by the means of
flooding broadcast, that is, upon receiving a valid mes-
sage of such a type from a neighbor, a bot immediately
broadcasts it to all connected bots within his peer-list.
The emerging problem of possible massive retransmis-
sions and consequential network overload can be solved
by allowing each message to be broadcasted only once.
Therefore, each bot maintains an internal list of already
transmitted push-messages, ignoring afterwards deliv-
ered messages which are already contained in it. The
advantage of this approach lies in the consequent max-
imum rate of propagation. We also exploit this method
to build a trust system as we explain in Section 2.3.

In contrast, pull-based message transmissions need
to be requested by the opposite party in the first place.
It should be noted, however, that a pull-based trans-
mission is usually the consequence of a prior push-
based delivered notification. For instance, the exis-
tence of a new program update is initially announced
by a push-message, indicating its availability as well as
providing further information such as the version num-
ber, binary hash values and the like. Subsequently, an
update transmission may be requested.

Finally, the constant need for synchronization has
to be taken into account, since freshly participating
bots must be synchronized to the current state of in-
formation. We achieve this by means of state ex-
change during initialization. That is, upon successful
connection establishment, both parties exchange the
unique identification number of their most recent push-
message. Consequent lack of synchronization emerg-
ing from this procedure is subsequently overcome by
exceptional transmission of the corresponding missing
push-messages.

2.2 Strong Cryptography

Tamper-proof command and update scheme.
A vital aspect of botnet administration is the authen-
ticity and integrity of commands: a bot should only
accept commands issued by the botmaster. In cur-
rent botnets, however, we observed that the botmasters
commonly use only a very weak form of authenticity,
e.g., by using a simple password scheme before sending
the actual command. Even if the botnets use stronger
authentication schemes, these can typically be broken,

e.g., Storm Worm uses a 64 bit RSA implementation
which can be defeated. In centralized IRC botnets, this
lack of authenticity could for example be overcome by
patching the IRC server used for command distribu-
tion in such a way that only the botmaster can send
messages in the designated channel. However, when
dealing with a decentralized network of equal peers, a
botmaster needs to ensure that no hostile parties like
defenders or other botnet groups can poison the botnet
by injecting malicious commands.

Asymmetric cryptography offers a simple, yet effec-
tive way to do this: before releasing a bot in the wild,
the botmaster creates a public/private pair of crypto-
graphic keys of which the former one is hardcoded into
the bot’s binary. Doing so enables the botmaster to
securely sign any commands or files using his private
key. All peers in the botnet are able to verify the com-
mands employing the hardcoded public key, but given
a reasonable key length (e.g. 2048 bits for RSA), no
defender will manage to forge the signature.

Rent a botnet. With the help of asymmetric cryp-
tography, a botmaster can take on the role of a trusted
certificate authority, which provides an efficient way to
rent the botnet to others in parts or as a whole, for a
variable amount of time, and for certain purposes. Let
us assume some company wants to use the botnet to
promote their services using spam mails. The botmas-
ter can sign a certificate for the lessee with his private
key in exchange for a certain amount of money. This
certificate contains the lessee’s public key, a timeframe
of validity, and a list of allowed command classes (e.g.,
spam distribution or DDoS).

From this point on, the renting party can inject
its own self-signed commands (bundled with the pur-
chased certificate) into the network via an arbitrary
peer. Any bot which receives such a message first veri-
fies the included certificate using the hardcoded public
key of the botmaster. In case of validity, it then verifies
the distributed command using the lessee’s public key
obtained from the certificate. If the command belongs
to a command class specified in the validated certificate
and the timeframe has not yet passed, the command is
scheduled or executed and the message bundle, consist-
ing of the signed command and the issuer’s certificate,
is forwarded to all connected bots.

To protect against malicious lessees, it is advisable
to implement a blacklist containing all invalidated pub-
lic keys. This blacklist is saved on each bot’s computer
and only the botmaster may add or remove public keys
using his private key to sign the order. Thus, all cer-
tificates which belong to an attacker can be revoked.

However, such a blacklist is of little use against at-
tacks which require only a short timeframe to be car-

3



ried out successfully. For example, a malicious lessee
could buy a botnet certificate for spam distribution
and misuse it by ordering all bots to send an e-mail to
a specified address, thereby revealing their IP address
or other sensitive data. In effect, an attacker could con-
veniently obtain valuable information about a botnet’s
size as well as its overall structure. Therefore, renting
a botnet should be considered as an option which has
to be used with caution by a botmaster.

Traffic obfuscation. Thus far we have discussed ex-
clusively threats to a botnet from within, that is, by
malicious clients. Because of legal reasons, defenders
might have to employ a completely different approach
and try to fight botnets without interacting with the
bots in any way. The most intuitive way of doing so
is by blocking a botnet’s communication. This can ei-
ther be achieved by filtering traffic to or from special
ports or by recognizing malicious packets based on cer-
tain properties of the botnet’s communication proto-
col. The former danger can be defeated by encapsu-
lating the botnet’s traffic into well-known application
layer protocols like DNS, HTTP or FTP. Especially
encapsulating all botnet communication within HTTP
requests will lead to a rather stealthy communication
since detecting such a communication channel is not
easy given the fact that most communication in to-
day’s Internet uses TCP port 80. The latter danger
is circumvented by encrypting all botnet-specific data
previous to transmission.

For reasons of efficiency, the use of a symmetric al-
gorithm like AES is advisable. Securely implementing
such an encryption scheme would require that a secret
key had already been exchanged via the Internet be-
tween the communication partners by the time of their
first encounter. As this is obviously impractical, Wang
et al. [29] proposed that the initiator of the connec-
tion should learn about the symmetric key at the same
time as he is told the destination’s address by some
other bot. Two coherent problems arise out of such an
implementation. First, all bots would have to use the
same key when connecting to a certain peer as there
is no trusted third party in a P2P botnet which could
securely issue individual keys. Second, the key would
have to be static as any change might prevent a sub-
stantial number of peers from reconnecting in the fu-
ture. Depending on the number of bots connected to a
certain peer, these restrictions would crucially weaken
traffic obfuscation and data confidentiality. Especially
in a botnet which can be easily crawled (e.g. the Storm
Worm botnet) non-individual, static symmetric keys
would be of practically no use when facing dedicated
defenders as they could be harvested with little effort.

Therefore, Rambot uses Diffie-Hellman key ex-
change to provide symmetric encryption with individ-
ual session keys. This way, there is no need for the
communication partners to know anything about each
other in the run-up and eavesdropping the conversation
is virtually impossible for any third party. To prevent a
man-in-the-middle attack in such a scenario, each bot
should calculate its own public/private keypair upon
installation and exchange not only IP addresses but
tuples of (IP address, public key) during peer list up-
dates. Based on this information, the initiator of a
connection can perform a challenge-response authenti-
cation of the server after having established a secure
channel via Diffie-Hellman key exchange and symmet-
ric cryptography.

The authentication of bots using asymmetric cryp-
tography also plays an important role in the following
paragraph, where we introduce a basic concept of trust
relying on credit points to improve botnet robustness.

2.3 Credit Point System

The need for trust. In the previous section, we dis-
cussed several cryptographic methods to prevent inter-
fering with a botnet’s command distribution mecha-
nism as well as the filtering of its network traffic. When
faced with a potent attacker (e.g., another botmaster
with many zombie computers at her disposal), sev-
eral new threats to a botnet’s reliability arise. One
grave danger is the possibility of a DoS attack based
on the P2P network’s bootstrapping process: an at-
tacker could try to flood a bot’s peer-list with fake
clients under her control. This would effectively pre-
vent the attacked bot from reconnecting to the network
in the future. If carefully planned and performed at a
large scale, such an attack could ultimately lead to the
separation of a botnet into relatively small fragments,
thereby drastically reducing its capabilities. Accepting
only a limited number of contacts per peer exchange is
only part of the solution, as we have to assume an at-
tacker who could easily create a significant number of
attacking fake clients via emulation. Thus, the attacker
against the botnet could control an almost arbitrarily
high percentage of clients in a bot’s neighborhood.

Cryptographic protection. Sustaining a botnet’s
robustness in such a challenging situation raises the
need for more sophisticated defense mechanisms. Ram-
bot thus includes a trust system which relies on credit
points as its metric. Trust is strictly bilateral in our
model, that is, we do not create a web of trust by
having clients exchange their information about each
other. Instead, credit points are confined to pairs of

4



clients. A major advantage of this design is its straight-
forward implementability and low error-proneness.

The tamper-proof linkage between credit points and
peer identities is guaranteed through the use of asym-
metric cryptography. This interconnection allows for
the implementation of a “safety net” in the form of
a blacklist: should an attacker manage to acquire a
menacing amount of points at a substantial number of
clients, the botmaster can stop this attacker by issuing
an order to add the corresponding public key to the
local blacklist of each bot. Thus, the attacker will lose
all his credit points throughout the botnet which are
tied to a certain public key. But as an attacker might
try to evade this situation by using a different public
key for each relationship with a valid bot, additional
measures have to be taken into account to prevent suc-
cessful credit point fraud, which we introduce later on.

Acquiring and managing credit points. The ba-
sic means of earning credit points is forwarding of com-
mands and updates to other peers. Hence, any mali-
cious client who seeks to accumulate a large number of
credit points to perform the flooding attack is forced
to contribute substantially to the overall botnet com-
munication process. This might prove to be a big hur-
dle for organizations like CERTs as they are bound
to certain legal obligations. An attacker could bypass
this problem through renting a botnet as previously
described and issuing a lot of benign commands (e.g.,
sending spam to non-existent addresses) to give her
malicious bots the opportunity to earn credit points
safely. In consequence, only forwarding of commands
which were signed using the botmaster’s private key
are rewarded. To prevent scamming by relaying out-
dated and therefore worthless commands or by focusing
solely on command distribution, a bot only increases
the score of all peers that forward a validly signed com-
mand whose timeframe has not yet passed. As the
credit point based peer-list is meant to reflect the cur-
rent availability of bots in the network, all peers who
have not relayed a command once its timeframe ends
lose some of their credit points.

Using credit points. As mentioned earlier, Ram-
bot’s P2P module relies on two separate peer-lists when
reconnecting to the botnet. While one of them serves
as a source for pseudo-random selection of peers to con-
nect to, the other list contains (public key, IP address,
credit point sum) tuples of all peers which have been
seen by the reconnecting bot within a reasonable time
span (e.g., the last month). This list is ordered by
credit points, which gives bots that have been a valu-
able contact in the past priority as a connection des-

tination. Since a high number of credit points closely
correlates with a high degree of availability in the past
(depending on the chosen timeframe), the trial-and-
error process of selecting bots from the credit point
based peer-list and connecting to them is feasible. It
should be noted that bots are only deleted from this
peer-list if they have not been seen for several weeks or
months. A connection error which happens before that
point in time does not result in deletion as the desti-
nation may be unavailable only temporarily. If a bot is
permanently unavailable (e.g., due to the subsequent
installation of a firewall or antivirus software), it will
eventually exceed the time-limit and be removed by the
P2P module’s garbage collector. In order to avoid con-
gestion in a peer that has gained a substantial amount
of credit points, there is an upper limit of connections
that a bot can hold at a time. When this limit has
been reached and another bot wants to establish a new
connection, this request is refused.

The credit point based peer-list guarantees that even
in a situation where the regular peer-list contains only
malicious bots due to a flooding attack, a reconnecting
bot will still know a sufficient number of benign bot-
net members. On the other hand, choosing bots in a
pseudo-random manner from the regular peer-list pro-
tects against the effects of credit point fraud. Taking
over both lists simultaneously at a substantial number
of bots would require enormous bandwidth (to perform
the flooding attack) as well as processing power. The
latter requirement is explained in the following section.

2.4 Proof-of-Work

Extending the credit point system. Given
enough bandwidth to earn trust in the run-up to a
DoS attack, up to this point, it would have been per-
fectly possible to attack our P2P botnet using a sig-
nificant amount of emulated bots. As a botnet’s usual
field of application is not distributed computing, but
mass mailing of spam or performing DoS attacks, the
hardware requirements for its members are pretty low.
Thus, an attacker could easily assign a range of several
thousand IP addresses to only a few real computers,
thereby infiltrating the network with a large number of
fake clients. Furthermore, these malicious bots could
earn a considerable amount of credit points if their soft-
ware had been optimized to spend the available band-
width on command distribution rather than executing
orders issued by the botmaster. This danger can be
tackled by confronting a potential attacker with the
substantial computation power of a common botnet,
which results from the fact that contemporary com-
puters have a lot of idle CPU cycles. In the following,
we show how to utilize these circumstances to provide

5



real bots with a significant advantage over malicious
(simulated) ones when acquiring credit points.

Protocol description. Proof-of-work systems are
based on tasks which are moderately hard to solve for
a client, but easy to verify on the server side [16, 19].
A perfect example is the partial inversion of hashes:
as cryptographic hash functions are preimage resis-
tant by definition, some information about the input
(e.g., its size as well as some publicly known, but ran-
dom, parts to prevent the use of rainbow tables) has
to be given to the client beforehand [1]. There are two
classes of proof-of-work protocols: challenge-response
and solution-verification. We focus on the former as it
is particularly suitable for a P2P botnet. An idle bot
(hereinafter referred to as Alice) who wants to earn
some other bot’s (called Bob) trust asks for a chal-
lenge. Bob constructs a random one and presents it to
Alice. After a reasonable amount of time (e.g., 15 min-
utes on a common personal computer) Alice succeeds in
solving the problem and transmits the solution to Bob,
who verifies it and awards Alice an equivalent in credit
points. Again, both the construction and the verifica-
tion of the task may not be demanding as a Bob would
otherwise become vulnerable to DoS attacks through
flooding with requests or wrong answers. Since the
whole procedure should be as unobtrusive as possible
on the client side, it is advisable to have the bot soft-
ware only take advantage of an idle CPU in case the
screensaver is active or if there has not been any user
input in a certain amount of time.

Prevention of crawling. The proof-of-work system
is not limited to earning trust in the form of credit
points. Current P2P botnets like the Storm Worm net-
work can be crawled which provides potential attackers
with valuable information to base their actions on [14].
Prepending a proof-of-work to the bots’ peer exchange
renders almost any form of crawling unfeasible. Even
given easy tasks (e.g., equivalent to five minutes of
computation on a standard home computer), the whole
network would have completely changed its structure
through dial-up caused IP address changes and general
diurnal effects before an attacker has gathered any sig-
nificant amount of information about the overall net-
work. There is a disadvantage, though, in that if a
client does not stay online long enough to complete
a proof-of-work task, it can not join the botnet and
there will not receive any updates to its peer-list. This
might ultimately lead to the permanent disconnection
of a bot from the network if it repeatedly fails to solve
a proof-of-work task upon joining the botnet. On the

other hand, such bots would not be of considerable use
for the botmaster anyhow.

3 Botnet Tracking for Rambot

Up to now, we have introduced measures aimed at
ensuring the botnet’s security against possible attack-
ers, who pursue its mitigation, takeover and/or possi-
ble destruction. In order to provide a rather compre-
hensive view on the actual vulnerability, this section
summarizes weaknesses and assesses individual threats
along with their countermeasures.

Assuming that the depicted measures are imple-
mented in a correct manner, the general vulnerability
of the botnet is limited to purposely induced starva-
tion, achieved by peer-list poisoning. In this scenario,
an attacker attempts to infiltrate the botnet with a
massive amount of fake clients. Having taken over the
entire peer-list of a specific bot, the fake clients sub-
sequently refuse to forward any botmaster commands,
therefore effectively starving this bot. However, due
the presence of the credit point system, fake clients
are inevitably forced to forward signed commands for
at least a certain amount of time, meanwhile support-
ing the botnet structure. Otherwise, the fake client
would be incapable of taking over the point-based por-
tion of the bootstrapping list. And since the credit
point system runs with timeout values, any attempts
at optimizing the forwarding are rendered impossible.
The attacker thus has to constantly contribute to the
botnet’s communication scheme. The bottom-line is
that an attacker is bound to play his steady role in the
botnet-game for a long time, possibly exposing him to
legal issues as well, since he unavoidably helps in prop-
agating instructions appointed for a criminal act.

If we assume that the attacker has managed to by-
pass the depicted obstacles and thus taken over the
point-based portion of the peer-list, he would still be
exposed to an inevitable uncertainty in choosing the
right moment in order to cease forwarding messages to
a specific bot. The reason for that lies in the simple fact
that each bot connects to random peer-list entries for a
randomly chosen number of times as part of the boot-
strapping process. Along with the fact that the bot
keeps these connections secret from the outer world,
the attacker never knows when the peer-list of the bot
is completely taken over by his fake clients. However, if
the moment of interruption is improperly chosen, i.e.,
there is still at least one real bot in the vicinity, the
credit point system disfavors fake clients with each de-
livered command due to the subsequent loss of points,
eventually bringing back the real bots into the game.
Furthermore, once the bots restarts, a completely new

6



vicinity will be chosen randomly during the bootstrap-
ping process. As a consequence, the only possibility left
is to massively infiltrate the botnet. That, however, is
prevented by the proof-of-work mechanism.

4 Related Work

We are not the first to present designs for advanced
botnets. Compared to the proposed design by Wang et
al. [29], our main advantage is that the botnet is more
resilient in the sense that a defender can not easily get
an overview of all infected machines within the bot-
net: our design ensures that an attacker can not exploit
the P2P structure to crawl the network. Furthermore,
the credit point system forces a defender to constantly
contribute to the communication within the botnet in
order to acquire credit points. This is an extended ver-
sion of the honeypot-aware botnet construction idea
introduced by Zou et al. [30].

The botnet design by Vogt et al. [28] has the main
limitation that the botnet can not grow: once the bot-
net is established, no new bots can easily join the net-
work. This is a severe limitation since it restricts the
botnet to a fixed population, which will degrade over
time since infected machines are cleaned up. Dagon
et al. presented several techniques for botnet commu-
nication and studied their resilience [5]. However, no
implementation details are provided. Our botnet de-
sign is an instance of random graph botnets.

5 Conclusion and Future Work

In this paper, we presented the design of an ad-
vanced botnet that takes into account the lessons we
learned when tracking a diverse set of botnets over a
time period of several months. The core building blocks
of our botnet are:

• Using strong cryptography to safeguard the com-
munication channel within the botnet and guaran-
tee authenticity and integrity of the botmaster’s
commands.

• A credit-point system to build bilateral trust
amongst the bots.

• A proof-of-work scheme to protect against attacks
targeting the P2P based network structure.

Besides the presented design decisions, there are
more techniques that need to be taken into account
when designing next-generation botnet detection sys-
tems. For example, the communication pattern used by

NNTP [17] is much more suitable for anonymous com-
munication than DHT-style routing as used by Storm
Worm. This communication pattern is the core of
fault-tolerant information dissemination like in Gold-
ing’s weak consistency replication [9] or the reliable
broadcast algorithms by Hadzilacos and Toueg [13].
Botnets based on these techniques or the ideas intro-
duced in this paper will be much harder to mitigate
than current botnets.

In the future, we thus need to develop botnet de-
tection systems that keep such advanced botnet de-
signs into account. Todays botnets can be defeated by
mitigating the central botnet C&C server or exploiting
weaknesses in the P2P protocol of the botnet. In the
future, such attacks may not work since botnets like
the one presented in this paper are immune against all
botnet tracking methods proposed so far. But one fun-
damental property of bots will presumably also remain
in the future: the attackers abuse the compromised
machine to execute illicit tasks like sending of spam
or performing Distributed Denial of Service attacks.
Botnet detection system that focus on the effects of a
compromise might thus be able to also detect future
botnets. Instead of focussing on the detection of the
C&C channel, it may thus be promising to focus on
behavior-based detection.

References

[1] A. Back. HashCash, 1997. http://hashcash.org/.

[2] J. R. Binkley and S. Singh. An algorithm for
anomaly-based botnet detection. In Proceedings of
Second Workshop on Steps to Reducing Unwanted
Traffic on the Internet (SRUTI’06), pages 43–48,
July 2006.

[3] BitTorrent. http://www.bittorrent.com/.

[4] E. Cooke, F. Jahanian, and D. McPherson. The
zombie roundup: Understanding, detecting, and
disrupting botnets. In Proceedings of Workshop
on Steps to Reducing Unwanted Traffic on the In-
ternet (SRUTI’05), June 2005.

[5] D. Dagon, G. Gu, C. P. Lee, and W. Lee. A taxon-
omy of botnet structures. In Proceedings of 23rd
Annual Computer Security Applications Confer-
ence (ACSAC’07), pages 325–339, 2007.

[6] D. Dittrich and S. Dietrich. Command and Con-
trol Structures in Malware. ;login:, 32(6), 2007.

[7] J. R. Douceur. The Sybil attack. In Proceedings of
the First International Workshop on Peer-to-Peer
Systems (IPTPS), pages 251–260, March 2002.

7



[8] F. Freiling, T. Holz, and G. Wicherski. Bot-
net Tracking: Exploring a Root-Cause Methodol-
ogy to Prevent Distributed Denial-of-Service At-
tacks. In Proc. of 10th European Symposium On
Research In Computer Security (ESORICS’05),
2005.

[9] R. A. Golding. Weak-Consistency Group Commu-
nication and Membership. PhD thesis, University
of California at Santa Cruz, Dec. 1992. UCSC-
CRL-92-52.

[10] J. B. Grizzard, V. Sharma, C. Nunnery, B. B.
Kang, and D. Dagon. Peer-to-peer botnets:
Overview and case study. In Proc. of Hot Top-
ics in Understanding Botnets (HotBots’07), 2007.

[11] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and
W. Lee. Bothunter: Detecting malware infection
through ids-driven dialog correlation. In Proc. of
the 16th USENIX Security Symposium, 2006.

[12] G. Gu, J. Zhang, and W. Lee. BotSniffer: De-
tecting botnet command and control channels in
network traffic. In Proceedings of the 15th Annual
Network and Distributed System Security Sympo-
sium (NDSS’08), February 2008.

[13] V. Hadzilacos and S. Toueg. Fault-tolerant broad-
casts and related problems. In S. Mullender,
editor, Distributed Systems, chapter 5. Addison-
Wesley, second edition, 1993.

[14] T. Holz, M. Steiner, F. Dahl, E. Biersack, and
F. Freiling. Measurements and Mitigation of
Peer-to-Peer-based Botnets: A Case Study on
Storm Worm. In Proceedings of the First USENIX
Workshop on Large-Scale Exploits and Emergent
Threats (LEET ’08), 2008.

[15] Honeynet Project. Know your Enemy: Tracking
Botnets, March 2005. http://www.honeynet.org/

papers/bots.

[16] M. Jakobsson and A. Juels. Proofs of work and
bread pudding protocols. In Proceedings of the
IFIP TC6/TC11 Joint Working Conference on
Secure Information Networks, 1999.

[17] B. Kantor and P. Lapsley. Network news transfer
protocol. Internet RFC 977, available at http:

//www.faqs.org/rfcs/rfc977.html, Feb. 1986.

[18] A. Karasaridis, B. Rexroad, and D. Hoeflin. Wide-
scale botnet detection and characterization. In
Proceedings of Hot Topics in Understanding Bot-
nets (HotBots’07), April 2007.

[19] R. Kennell and L. H. Jamieson. Establishing the
genuinity of remote computer systems. In Proc. of
the 12th USENIX Security Symposium, 2003.

[20] P. Maymounkov and D. Mazieres. Kademlia: A
Peer-to-peer informatiion system based on the
XOR metric. In Proceedings of the First Workshop
on Peer-to-Peer Systems (IPTPS), Mar. 2002.

[21] P. Porras, H. Saidi, and V. Yegneswaran. A Multi-
perspective Analysis of the Storm (Peacomm)
Worm. Technical report, Computer Science Lab-
oratory, SRI International, October 2007.

[22] M. A. Rajab, J. Zarfoss, F. Monrose, and
A. Terzis. A multifaceted approach to understand-
ing the botnet phenomenon. In Proceedings of the
6th Internet Measurement Conference, 2006.

[23] M. Ripeanu. Peer-to-peer architecture case study:
Gnutella network. In Proceedings of the First In-
ternational Conference on Peer-to-Peer Comput-
ing (P2P’01), 2001.

[24] A. Singh, T.-W. Ngan, P. Druschel, and D. S. Wal-
lach. Eclipse attacks on overlay networks: Threats
and defenses. In Proc. Infocom 06, Apr. 2006.

[25] M. Steiner, E. W. Biersack, and T. En-Najjary.
Exploiting KAD: Possible Uses and Misuses. Com-
puter Communication Review, 37(5), Oct 2007.

[26] J. Stewart. Storm worm DDoS attack. In-
ternet: http://www.secureworks.com/research/

threats/storm-worm, 2007.

[27] S. Stover, D. Dittrich, J. Hernandez, and S. Diet-
rich. Analysis of the Storm and Nugache Trojans:
P2P Is Here. ;login:, 32(6), 2007.

[28] R. Vogt, J. Aycock, and M. Jacobson. Army of
botnets. In Proceedings of the 14th Annual Net-
work and Distributed System Security Symposium
(NDSS’07), 2007.

[29] P. Wang, S. Sparks, and C. C. Zou. An advanced
hybrid peer-to-peer botnet. In Proceedings of the
First Workshop on Hot Topics in Understanding
Botnets (HotBots), pages 2–2, 2007.

[30] C. C. Zou and R. Cunningham. Honeypot-aware
advanced botnet construction and maintenance.
In Proceedings of the International Conference on
Dependable Systems and Networks, 2006.

8


